
Simple Control Baselines for Evaluating Transfer Learning
Supplementary Material

Abstract

The supplementary material provides further discussions
about the evaluation standard, along with additional quali-
tative visualizations:

1. Visualizations of depth and surface normals predic-
tions for all pre-training methods (Section 1).

2. A discussion on the motivations behind the proposed
calibrated cumulative improvement metric (Section 2).

3. Training details and hyper-parameters for all experi-
ments in the main paper (Section 3).

4. A discussion on the variance of empirical results across
multiple training runs (Section 4).

5. A note on characterization of downstream tasks using
the calibrated risk curves of their scratch control base-
lines (Section 5).

1. Visualizations of Model Predictions.
We visualize predictions for depth and surface normals

estimation (Fig. 1) for the scratch control baseline and dif-
ferent pre-training methods across different data-regimes.
As mentioned in the main paper, we see that qualitative
results show little difference between pre-training methods
and scratch performance at high-data regimes.

2. Motivating the Calibrated Cumulative Im-
provement Metric

In Section 3.3 of the main paper, we introduce calibrated
cumulative improvement as a global metric to evaluate the
effectiveness of a pre-training method for a given down-
stream task. The main goal of this metric is to integrate
the relative improvement over scratch for different data-
regimes, in order to further compress the information con-
tained in the learning curves into a single comparable num-
ber.

For such a metric to be useful when comparing different
methods, it should at minimum satisfy the following prop-
erty: if the calibrated risk curve for one transfer method lies

CCI values ↑
Normal Depth ImageNet CIFAR-100 EuroSAT

SwAV IN 0.297 0.379 0.606 1.027 0.624

MOCOv2 IN 0.302 0.375 0.330 0.843 0.492

SimCLR IN 0.367 0.271 0.520 1.064 0.596

SimSiam IN 0.232 0.235 0.185 0.507 0.449

Barlow Twins IN 0.294 0.305 0.580 1.126 0.591

PIRL IN 0.230 0.115 0.252 0.828 0.462

Jigsaw IN 0.257 0.304 0.249 0.546 0.473

Colorization IN 0.122 0.115 0.058 0.112 0.308

SwAV Taskonomy 0.473 0.431 / / /

MOCOv2 Taskonomy 0.382 0.358 / / /

Table 1. Do different tasks benefit differently from self-supervised
pre-training? The complete list of CCI values for different pre-
training methods on different downstream tasks (corresponding to
the plots provided in Fig. 4 of the main paper).

strictly below another, then its metric should be higher. This
property holds for the following class of functions:

Iw(f) =

∫ nhigh

nlow

w(n)(cRscratch(n)− cRf (n))dn,

where w(n) is any strictly positive function weighting
the relative improvements over scratch across different data-
regimes, and nlow and nhigh denote the lowest and highest
dataset sizes used for transfer-learning.

Choosing w(n) = 1 corresponds to the original area
between curves in the cRf -n plot. This weighting, how-
ever, overemphasises the long-tail of the curves at the high
data-regimes where little improvement occurs as the dataset
size is increased (Fig1 and Fig.2). One, therefore, needs to
choose w(n) appropriately in order to balance the contribu-
tions from the low- and high-data regimes.

The weighting factor w(n) should also take into ac-
count the inherent differences in how the calibrated risk
values scale across data regimes for different downstream
tasks (i.e., the inherent difficulty of learning a given down-
stream task, as captured by the cRscratch(n) curve of the
scratch control-baseline). We, therefore, suggest setting
w(n) = cR′

scratch(n).
This weighting function assigns equal volume to those



Figure 1. Visualizations of depth and surface normals predictions for different methods across different data-regimes. It can be observed
that the differences between methods become insignificant at the high data-regime.

differences ∆n in dataset sizes that lead to the same im-
provement ∆cRscratch in terms of the calibrated risk of the
scratch baseline. Using this weighting directly corresponds

to calculating the integral in the cRf -cRscratch plot:

IcR′
scratch

=

∫ nhigh

nlow

(cRscratch(n)− cRf (n))cR
′
scratchdn

=

∫ nhigh

nlow

(cRscratch(n)− cRf (n))d(cRscratch(n))

=

∫ cRhigh

cRlow

(cRscratch − cRf (cRscratch))d(cRscratch),



Figure 2. The network architecture used for pixel-wise regression tasks. We use a ResNet50 encoder and a UNet decoder with 6 upsample
blocks and skip connections.

where cRlow and cRhigh denote the calibrated risk of the
scratch control baseline for dataset sizes nlow and nhigh re-
spectively. Normalizing the last expression using the over-
all area under the scratch curve corresponds to the proposed
calibrated cumulative improvement metric:

CCIf =

∫ cRhigh

cRlow
(cRscratch − cRf )d(cRscratch)∫ cRhigh

cRlow
cRscratchd(cRscratch)

.

Table 1 shows the complete CCI values for Section 5.2
of the main paper.

3. Training Details.
3.1. Pre-trained encoders

We use ImageNet pre-trained ResNet50 encoders from
VISSL [1]. All encoders, except for colorization, were used
without any modifications to the VISSL implementation.
For colorization, we follow the setup of [2] and modify the
conv1 layer to take a single-channel input.

3.2. Pixel-wise Tasks

For all pixel-wise regression tasks we sample random
subsets of sizes 100, 1K, 10K and 100K from the full+
training split of the Taskonomy dataset [3]. We further split
them into train and validation sets with a ratio of 80 / 20.
For evaluation, we sampled 60K test images from the cor-
responding test split of the full+ version.

As a decoder, we use a standard UNet with 6 upsample
blocks (Fig. 2). Skip connections are used, where the cor-
responding features are extracted from conv1, layer1,
layer2, layer3 and layer4 of the ResNet encoder us-
ing a convolution to match the size of the corresponding
UNet upsampling block.

We train the model parameters by optimizing the L1 loss
with the AdamW optimizer. We use a weight decay of 1e-3
and a learning rate of 1e-3. When performing transfers, we
also warm-up the learning rate for the first 1000 steps. We
use a batch size of 64.

3.3. Classification Tasks

ImageNet. We sample random subsets to create differ-
ent data-regimes: 31.25K, 62.5K, 125K, 250K, 500K and
1M. We use a ratio of 80 / 20 to create the train and valida-
tion splits. We use SGD optimizer with momentum 0.9 and
weight decay is 1e-4, and train for 100 epochs with a batch
size of 256. For transfer models, the initial learning rate is
set to 0.1, and warmed-up for the first 5 epochs, after which
it is decayed by 0.1 every 30 epochs. We use standard hor-
izontal flip and random resized crop augmentations. The
50K ImageNet validation split is used to evaluate the final
performance.

CIFAR100. We sample random subsets to create differ-
ent data-regimes: 1.5K, 3.125K, 6.25K, 12.5K, 25K, and
50K. We use a ratio of 80 / 20 to create the train and valida-
tion splits. Additionally, we create subsets with 3, 5, 7, 10
training images per class and for validation we use one im-
age per class. We set the batch size to 64, and use horizontal
flipping and random crop augmentations. We run training
for 40k training steps using cross-entropy loss function and
apply early stopping (that is, if validation error doesn’t de-
crease by 1e-4 after 10k steps, training is stopped). We use
the AdamW optimizer with a weight decay of 1e-4. The
learning rate is set to 1e-3 for scratch models, and 1e-4
when fine-tuning pre-trained encoders. Results for all data
regimes, except maximum data regime, are averaged across
2 runs.

EuroSAT. EuroSAT dataset doesn’t have default train,
validation, and test splits; so we randomly split it using a
ratio of 8/1/1 respectively, while keeping the distribution
of classes the same. Different data-regimes consist of the
following dataset sizes: 18, 37, 75, 303, 1.21K, 4.86K,
19.44K. For dataset sizes of 18, 37 and 75 we create sub-
sets using stratification and use 1 image per class for valida-
tion. We only use horizontal flip for data augmentation. For
training, we use the same hyper-parameters as CIFAR100.

4. Variance Analysis.
To give an idea about the general scale of variances for

calibrated risk values across different training runs (i.e., due



Figure 3. Variance Analysis. We show standard deviations over
the choice of training samples for the scratch control baseline and
two pre-training methods (namely, MOCOv2 and SwAV).

to factors like the random sub-sampling of transfer train-
ing data in different data-regimes, and the initialization of
network parameters), we compute standard deviations for a
limited set of pre-training methods (i.e., the scratch base-
line, SwAV Taskonomy, and MOCOv2 Taskonomy) using
multiple training runs (namely, 4 runs for 100 and 1000
data-regimes and 3 runs for 10000). The results are shown
in Fig.3. We generally observe that the means for different
methods do not lie within the standard deviations of other
methods, suggesting that valid comparisons can be made.
We also observe that standard deviations in general are rel-
atively low.

5. Characterizing the Sample Complexity of
Tasks via Scratch Calibrated Risks

Figure 4. Calibrated risk curves for the scratch model of dif-
ferent tasks. It can be observed that the learning speed and the
required number of training examples, even for those that used ex-
actly the same dataset (i.e. surface normals, depth, and 2D edges
which all used Taskonomy dataset). This is a useful characteriza-
tion of tasks.

In this section, we discuss the calibrated risk curves of
scratch networks can behave differently for different tasks

and how that can be an informative signal. Looking at
Fig. 4, it can be observed that learning speed, as indicated
by the number of training samples, varies between different
tasks. This is true for the tasks that used exactly the same
datasets (i.e. surface normals, depth, and 2D edges) – hence
the training/testing dataset is not a confounder, and the ob-
served variance can be attributed to the inherent specifics
of each task and their interplay with the learning machin-
ery (the inductive biases in the network, the optimizer, etc).
Thus one can use the calibrated risk of scratch as a par-
ticular characterization of a task, e.g. in terms of its in-
herent sample complexity (i.e. how much data learning a
certain tasks demands given a certain learning machinery).
This is particularly informative in the context of transfer and
self-supervised learning since, as evidenced in Fig. 4, cer-
tain tasks need massively less data to learn, thus the value
of developing a pre-trained feature for them is proportion-
ally less. This view extracted out of scratch calibrated risk
curves can be extended to aspects besides learning speed as
well, if one plots the curves for other forms of generaliza-
tion, e.g. across different domains.

We included 2D-edges (i.e., the sobel filter) as an addi-
tional pixel-wise regression task from Tasknonomy’s dic-
tionary [3] in this plot to make an illustration using a task
known to be relatively simpler. However, the variance ex-
ists across other tasks too, even those that seem similar to
each other (e.g. depth and surface normals). This further
supports the potential usefulness of this quantification.

References
[1] Priya Goyal, Quentin Duval, Jeremy Reizenstein, Matthew

Leavitt, Min Xu, Benjamin Lefaudeux, Mannat Singh, Vini-
cius Reis, Mathilde Caron, Piotr Bojanowski, Armand Joulin,
and Ishan Misra. Vissl. https://github.com/
facebookresearch/vissl, 2021. 3

[2] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan
Misra. Scaling and benchmarking self-supervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 6391–6400,
2019. 3

[3] Amir R Zamir, Alexander Sax, William Shen, Leonidas J
Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy: Dis-
entangling task transfer learning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
3712–3722, 2018. 3, 4

https://github.com/facebookresearch/vissl
https://github.com/facebookresearch/vissl

	. Visualizations of Model Predictions.
	. Motivating the Calibrated Cumulative Improvement Metric
	. Training Details.
	. Pre-trained encoders
	. Pixel-wise Tasks
	. Classification Tasks

	. Variance Analysis.
	. Characterizing the Sample Complexity of Tasks via Scratch Calibrated Risks

